Genome Analysis of a Novel Bradyrhizobium sp. DOA9 Carrying a Symbiotic Plasmid

نویسندگان

  • Shin Okazaki
  • Rujirek Noisangiam
  • Takashi Okubo
  • Takakazu Kaneko
  • Kenshiro Oshima
  • Masahira Hattori
  • Kamonluck Teamtisong
  • Pongpan Songwattana
  • Panlada Tittabutr
  • Nantakorn Boonkerd
  • Kazuhiko Saeki
  • Shusei Sato
  • Toshiki Uchiumi
  • Kiwamu Minamisawa
  • Neung Teaumroong
چکیده

Bradyrhizobium sp. DOA9 isolated from the legume Aeschynomene americana exhibited a broad host range and divergent nodulation (nod) genes compared with other members of the Bradyrhizobiaceae. Genome analysis of DOA9 revealed that its genome comprised a single chromosome of 7.1 Mbp and a plasmid of 0.7 Mbp. The chromosome showed highest similarity with that of the nod gene-harboring soybean symbiont B. japonicum USDA110, whereas the plasmid showed highest similarity with pBBta01 of the nod gene-lacking photosynthetic strain BTAi1, which nodulates Aeschynomene species. Unlike in other bradyrhizobia, the plasmid of DOA9 encodes genes related to symbiotic functions including nodulation, nitrogen fixation, and type III/IV protein secretion systems. The plasmid has also a lower GC content (60.1%) than the chromosome (64.4%). These features suggest that the plasmid could be the origin of the symbiosis island that is found in the genome of other bradyrhizobia. The nod genes of DOA9 exhibited low similarity with those of other strains. The nif gene cluster of DOA9 showed greatest similarity to those of photosynthetic bradyrhizobia. The type III/IV protein secretion systems of DOA9 are similar to those of nod gene-harboring B. elkanii and photosynthetic BTAi1. The DOA9 genome exhibited intermediate characteristics between nod gene-harboring bradyrhizobia and nod gene-lacking photosynthetic bradyrhizobia, thus providing the evidence for the evolution of the Bradyrhizobiaceae during ecological adaptation. Bradyrhizobium sp. DOA9 isolated from the legume Aeschynomene americana exhibited a broad host range and divergent nodulation (nod) genes compared with other members of the Bradyrhizobiaceae. Genome analysis of DOA9 revealed that its genome comprised a single chromosome of 7.1 Mbp and a plasmid of 0.7 Mbp. The chromosome showed highest similarity with that of the nod gene-harboring soybean symbiont B. japonicum USDA110, whereas the plasmid showed highest similarity with pBBta01 of the nod gene-lacking photosynthetic strain BTAi1, which nodulates Aeschynomene species. Unlike in other bradyrhizobia, the plasmid of DOA9 encodes genes related to symbiotic functions including nodulation, nitrogen fixation, and type III/IV protein secretion systems. The plasmid has also a lower GC content (60.1%) than the chromosome (64.4%). These features suggest that the plasmid could be the origin of the symbiosis island that is found in the genome of other bradyrhizobia. The nod genes of DOA9 exhibited low similarity with those of other strains. The nif gene cluster of DOA9 showed greatest similarity to those of photosynthetic bradyrhizobia. The type III/IV protein secretion systems of DOA9 are similar to those of nod gene-harboring B. elkanii and photosynthetic BTAi1. The DOA9 genome exhibited intermediate characteristics between nod gene-harboring bradyrhizobia and nod gene-lacking photosynthetic bradyrhizobia, thus providing the evidence for the evolution of the Bradyrhizobiaceae during ecological adaptation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Type 3 Secretion System (T3SS) of Bradyrhizobium sp. DOA9 and Its Roles in Legume Symbiosis and Rice Endophytic Association

The Bradyrhizobium sp. DOA9 strain isolated from a paddy field has the ability to nodulate a wide spectrum of legumes. Unlike other bradyrhizobia, this strain has a symbiotic plasmid harboring nod, nif, and type 3 secretion system (T3SS) genes. This T3SS cluster contains all the genes necessary for the formation of the secretory apparatus and the transcriptional activator (TtsI), which is prece...

متن کامل

Divergent Nod-Containing Bradyrhizobium sp. DOA9 with a Megaplasmid and its Host Range

Bradyrhizobium sp. DOA9, a non-photosynthetic bacterial strain originally isolated from the root nodules of the legume Aeschynomene americana, is a divergent nod-containing strain. It exhibits a broad host range, being able to colonize and efficiently nodulate the roots of most plants from the Dalbergioid, Millettioid, and Robinioid tribes (7 species of Papilionoideae). In all cases, nodulation...

متن کامل

Complete Genome Sequence of Bradyrhizobium sp. Strain CCGE-LA001, Isolated from Field Nodules of the Enigmatic Wild Bean Phaseolus microcarpus

We present the complete genome sequence of Bradyrhizobium sp. strain CCGE-LA001, a nitrogen-fixing bacterium isolated from nodules of Phaseolus microcarpus. Strain CCGE-LA001 represents the first sequenced bradyrhizobial strain obtained from a wild Phaseolus sp. Its genome revealed a large and novel symbiotic island.

متن کامل

Regulation of expression of symbiotic genes in Rhizobium sp. NGR234.

Research in the field of Rhizobium-legume symbiosis faces a new challenge: integrate the wealth of information generated by genomic projects. The goal: apprehend the complexity of the molecular mechanisms involved in symbiotic associations. At the time of writing, the genomes of three micro-symbionts (Bradyrhizobium japonicum, Mesorhizobium loti and Sinorhizobium meliloti) have been sequenced, ...

متن کامل

Novel European free-living, non-diazotrophic Bradyrhizobium isolates from contrasting soils that lack nodulation and nitrogen fixation genes – a genome comparison

The slow-growing genus Bradyrhizobium is biologically important in soils, with different representatives found to perform a range of biochemical functions including photosynthesis, induction of root nodules and symbiotic nitrogen fixation and denitrification. Consequently, the role of the genus in soil ecology and biogeochemical transformations is of agricultural and environmental significance....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2015